metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2,2'-Bipyridine- $\kappa^2 N, N'$)(3,5-dinitrosalicylato- $\kappa^2 O^1, O^2$)(pyridine- κN)copper(II)

De-Cai Wen,* Lin-Hua Wu, Chun-Long Zhong, Tian-Yang Xie and Hong-Gui Ta

Department of Chemistry, Longyan University, Longyan, Fujian 364000, People's Republic of China

Correspondence e-mail: wendecai1227@yahoo.com.cn

Received 22 July 2007; accepted 11 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.052; wR factor = 0.149; data-to-parameter ratio = 12.1.

In the title compound, $[Cu(C_7H_2N_2O_7)(C_5H_5N)(C_{10}H_8N_2)]$, the Cu^{II} atom is coordinated by two O atoms from a 3,5dinitrosalicylate ligand, two N atoms from a 2,2'-bipyridine ligand and one N atom from a pyridine ligand in a squarepyramidal geometry. The structure is stabilized by $C-H\cdots O$ hydrogen bonds and $\pi-\pi$ interactions between the bipyridine ligands, with a centroid–centroid distance between neighbouring aromatic rings of 3.96 (8) Å.

Related literature

For related literature, see: He *et al.* (2005, 2006); Lemoine *et al.* (2004); Thurston *et al.* (2004); Valigura *et al.* (2004); Wang & Okabe (2004); Wen *et al.* (2007); Zhu *et al.* (2003).

Experimental

Crystal data	
$\begin{bmatrix} Cu(C_7H_2N_2O_7)(C_5H_5N)(C_{10}H_8N_2) \end{bmatrix}$ $M_r = 524.93$ Triclinic, $P\overline{1}$ a = 9.981 (2) Å b = 10.269 (2) Å c = 11.913 (2) Å $\alpha = 68.99$ (3)°	$\gamma = 79.08 (3)^{\circ}$ $V = 1053.9 (5) Å^{3}$ Z = 2 Mo K α radiation $\mu = 1.10 \text{ mm}^{-1}$ T = 293 (2) K $0.24 \times 0.23 \times 0.21 \text{ mm}$
$\beta = 67.88 \ (3)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.767, T_{max} = 0.797$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	316 parameters
$wR(F^2) = 0.149$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
3813 reflections	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$

8700 measured reflections

 $R_{\rm int} = 0.052$

3813 independent reflections

3149 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Cu1-O2	1.896 (3)	Cu1-N3	2.020 (3)
Cu1-O3	1.917 (3)	Cu1-N5	2.267 (4)
Cu1-N4	2.007 (3)		
D2-Cu1-O3	94.21 (12)	N4-Cu1-N3	80.41 (15)
D2-Cu1-N4	163.41 (15)	O2-Cu1-N5	99.04 (15)
D3-Cu1-N4	90.62 (14)	O3-Cu1-N5	95.26 (13)
D2-Cu1-N3	91.20 (13)	N4-Cu1-N5	96.30 (14)
D3-Cu1-N3	164.71 (15)	N3-Cu1-N5	98.00 (14)

Table 2				
Hydrogen-bond	geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13-H13A\cdotsO1^{i}$	0.93	2.31	3.226 (6)	169
$C22-H22A\cdots O1^{ii}$	0.93	2.47	3.174 (6)	133
$C9-H9A\cdots O6^{iii}$	0.93	2.68	3.306 (6)	125
$C19-H19A\cdots O5^{iv}$	0.93	2.64	3.283 (6)	126

Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y - 1, z + 1; (iv) -x + 2, -y + 2, -z + 1.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

This work was supported financially by the Education Department of Fujian Province (grant No. JA02261) and Longyan Science and Technology Bureau (grant No. 2003LY03).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2074).

References

- He, X., Bi, M.-H., Ye, K.-Q., Fang, Q.-R., Zhang, P., Xu, J.-N. & Wang, Y. (2006). Inorg. Chem. Commun. 9, 1165–1168.
- He, X., Li, Y.-N., Li, G.-H., Li, Y.-Z., Zhang, P., Xu, J.-N. & Wang, Y. (2005). *Inorg. Chem. Commun.* 8, 983–987.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Lemoine, P., Viossat, B., Dung, N. H., Tomas, A., Morgant, G., Greenaway, F. T. & Sorenson, J. R. J. (2004). J. Inorg. Biochem. 98, 1734–1749.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Thurston, J. H., Kumar, A., Hofmann, C. & Whitmire, K. H. (2004). Inorg. Chem. 43, 8427–8437.
- Valigura, D., Melník, M., Koman, M., Martiŝka, L., Korabik, M., Mroziński, J. & Glowiak, T. (2004). Inorg. Chem. Commun. 7, 548–552.

Wang, Y. & Okabe, N. (2004). Acta Cryst. E60, m1434-m1436.

Wen, D.-C., Liu, S.-X. & Ribas, J. (2007). Inorg. Chem. Commun. 10, 661–665.
Zhu, L.-G., Kitagawa, S., Miyasaka, H. & Chang, H.-C. (2003). Inorg. Chim. Acta, 355, 121–126.

supplementary materials

Acta Cryst. (2007). E63, m2362-m2363 [doi:10.1107/S1600536807039876]

(2,2'-Bipyridine- $\kappa^2 N, N'$)(3,5-dinitrosalicylato- $\kappa^2 O^1, O^2$)(pyridine- κN)copper(II)

D.-C. Wen, L.-H. Wu, C.-L. Zhong, T.-Y. Xie and H.-G. Ta

Comment

Salicylic acid and its substituted derivatives continue to attract attention because of their versatile coordination modes (Thurston *et al.*, 2004; Valigura *et al.*, 2004; Wang & Okabe, 2004; Zhu *et al.*, 2003) and biological applications (Lemoine *et al.*, 2004). We report here the structure of a Cu^{II} complex with 3,5-dinitrosalicylic acid (He *et al.*, 2005; He *et al.*, 2006; Wen *et al.*, 2007).

In the title complex, the Cu^{II} atom is bonded to two N atoms from a 2,2'-bipyridine ligand, one carboxylate O atom and one phenolato O atom from a 3,5-dinitrosalicylate ligand (Fig. 1). The coordination of the Cu^{II} atom is completed by bonding to a pyridine N atom in the axial direction, giving a square-pyramidal geometry (Table 1). The dihedral angle of the carboxylate group and the aromatic ring in 3,5-dinitrosalicylate ligand is 10.8 (9)°. The two rings in the 2,2'-bipyridine ligand are a little twisted relative to each other, with a dihedral angle of 2.2 (3)°. The adjacent mononuclear units are further connected to each other by C—H…O hydrogen bonds between the 2,2'-bipyridine (or pyridine) ligands and the O atoms from carboxylate and NO₂ groups of the 3,5-dinitrosalicylate ligands (Table 2), resulting in an extended three-dimensional structure (Fig. 2). The partially overlapped arrangement indicates π - π interactions between the approximately parallel 2,2'-bipyridine ligands (the contact distances: C12…C17^v = 3.45 (7), C11…C13^v = 3.55 (6), C10…C14^v = 3.55 (7) Å; symmetry code: (v) 1 - *x*, 1 - *y*, 2 - *z*). The centroid–centroid distance of aromatic rings of the neighboring 2,2'-bipyridine ligands is 3.96 (8) Å. The crystal structure is stabilized by C—H…O hydrogen bonds and π - π interactions.

Experimental

A mixture of $Cu(NO_3)_2 \cdot 4H_2O$ (0.026 g, 0.1 mmol), 2,2'-bipyridine (0.016 g, 0.1 mmol), 3,5-dinitrosalicylic acid (0.046 g, 0.2 mmol), pyridine (0.1 ml), NaOH (0.008 g, 0.2 mmol) and distilled water (10 ml) was put into a 20 ml Teflon-lined autoclave and then heated at 393 K for 48 h. Green block-like crystals of the title compound suitable for X-ray analysis were collected from the reaction mixture.

Refinement

H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2. Packing diagram of the title compound viewed down the c axis. Hydrogen bonds are denoted by dashed lines.

$(2,2^{1}-Bipyridine-\kappa^{2}N,N^{1})(3,5-dinitrosalicylato-\kappa^{2}O^{1},O^{2})(pyridine-\kappa N)copper(II)$

Crystal data	
[Cu(C ₇ H ₂ N ₂ O ₇)(C ₅ H ₅ N)(C ₁₀ H ₈ N ₂)]	Z = 2
$M_r = 524.93$	$F_{000} = 534$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.654 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.981 (2) Å	Cell parameters from 3813 reflections
b = 10.269 (2) Å	$\theta = 1.9 - 25.5^{\circ}$
c = 11.913 (2) Å	$\mu = 1.10 \text{ mm}^{-1}$
$\alpha = 68.99 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 67.88 \ (3)^{\circ}$	Block, green
$\gamma = 79.08 \ (3)^{\circ}$	$0.24\times0.23\times0.21~mm$
V = 1053.9 (5) Å ³	

Data collection

Rigaku R-AXIS RAPID IP diffractometer	3813 independent reflections
Radiation source: fine-focus sealed tube	3149 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.052$
T = 293(2) K	$\theta_{max} = 25.5^{\circ}$
(i) scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -12 \rightarrow 11$
$T_{\min} = 0.767, T_{\max} = 0.797$	$k = -12 \rightarrow 0$
8700 measured reflections	$l = -14 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.149$	$w = 1/[\sigma^2(F_o^2) + (0.0764P)^2 + 1.3696P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.10	$(\Delta/\sigma)_{\rm max} = 0.001$
3813 reflections	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
316 parameters	$\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure inverient direct	

Primary atom site location: structure-invariant direct Extinction correction: none methods

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.73644 (5)	0.53558 (5)	0.63796 (4)	0.03526 (19)
N1	1.1054 (5)	0.8518 (4)	0.4277 (5)	0.0568 (11)
N2	1.1139 (4)	0.8782 (4)	0.0098 (4)	0.0487 (10)
N3	0.5974 (4)	0.3880 (4)	0.7647 (3)	0.0398 (8)
N4	0.7636 (4)	0.5261 (4)	0.7993 (3)	0.0383 (8)
N5	0.5748 (4)	0.7234 (4)	0.6310 (3)	0.0392 (8)
01	0.7897 (4)	0.4980 (4)	0.2997 (3)	0.0675 (12)
02	0.7302 (3)	0.4896 (3)	0.4995 (3)	0.0474 (8)
O3	0.9040 (3)	0.6421 (3)	0.5376 (3)	0.0423 (7)
O4	1.0337 (5)	0.8415 (4)	0.5388 (4)	0.0742 (12)
05	1.2219 (5)	0.9046 (5)	0.3731 (5)	0.0922 (15)
O6	1.2102 (4)	0.9586 (4)	-0.0363 (4)	0.0721 (12)
07	1.0631 (4)	0.8460 (4)	-0.0548 (3)	0.0661 (10)
C1	0.9028 (4)	0.6550 (4)	0.3326 (4)	0.0316 (8)
C2	0.9467 (4)	0.6966 (4)	0.4161 (4)	0.0343 (9)
C3	1.0503 (4)	0.8015 (5)	0.3536 (4)	0.0398 (10)
C4	1.1040 (5)	0.8609 (5)	0.2222 (5)	0.0458 (11)
H4A	1.1713	0.9288	0.1848	0.055*
C5	1.0565 (5)	0.8179 (4)	0.1485 (4)	0.0398 (10)
C6	0.9573 (4)	0.7168 (4)	0.2024 (4)	0.0380 (9)
H6A	0.9267	0.6899	0.1498	0.046*
C7	0.8009 (5)	0.5402 (5)	0.3796 (4)	0.0383 (9)
C8	0.5166 (5)	0.3232 (5)	0.7363 (5)	0.0474 (11)
H8A	0.5211	0.3478	0.6519	0.057*
C9	0.4261 (6)	0.2202 (5)	0.8288 (5)	0.0589 (14)
H9A	0.3690	0.1776	0.8073	0.071*
C10	0.4227 (6)	0.1824 (5)	0.9525 (5)	0.0620 (15)
H10A	0.3635	0.1131	1.0158	0.074*
C11	0.5064 (6)	0.2467 (5)	0.9828 (5)	0.0554 (13)
H11A	0.5056	0.2204	1.0663	0.066*
C12	0.6925 (5)	0.4151 (6)	1.0246 (4)	0.0531 (12)
H12A	0.6369	0.3507	1.0977	0.064*
C13	0.7826 (6)	0.4939 (6)	1.0325 (5)	0.0614 (15)
H13A	0.7900	0.4832	1.1109	0.074*
C14	0.8622 (6)	0.5890 (6)	0.9233 (5)	0.0575 (13)
H14A	0.9236	0.6439	0.9271	0.069*
C15	0.8506 (5)	0.6029 (5)	0.8071 (5)	0.0480 (11)
H15A	0.9049	0.6673	0.7332	0.058*
C16	0.6849 (5)	0.4322 (5)	0.9066 (4)	0.0404 (10)
C17	0.5929 (5)	0.3521 (4)	0.8872 (4)	0.0412 (10)
C18	0.5984 (5)	0.8385 (5)	0.6463 (4)	0.0448 (11)
H18A	0.6903	0.8471	0.6448	0.054*
C19	0.4958 (6)	0.9440 (5)	0.6640 (5)	0.0536 (12)
H19A	0.5174	1.0221	0.6747	0.064*
C20	0.3603 (6)	0.9338 (6)	0.6658 (5)	0.0596 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H20A C21 H21A C22	0.2879 0.3327 (5) 0.2421 0.4424 (5)	1.0038 0.8176 (6) 0.8083 0.7168 (5)	0.679 0.646 0.646 0.629	6 0.0 9 (5) 0.0 3 0.0 2 (4) 0.0	072* 0575 (14) 069* 0468 (11)	
H22A	0.4245	0.6394	0.615	1 0.0)56*	
Atomic displa	cement parameters	$s(A^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cu1	0.0393 (3)	0.0428 (3)	0.0239 (3)	-0.0148 (2)	-0.0062 (2)	-0.0092 (2)
N1	0.054 (3)	0.053 (3)	0.074 (3)	-0.022 (2)	-0.024 (2)	-0.020 (2)
N2	0.045 (2)	0.041 (2)	0.036 (2)	0.0020 (17)	-0.0007 (18)	0.0001 (17)
N3	0.046 (2)	0.0372 (19)	0.0293 (17)	-0.0084 (16)	-0.0018 (15)	-0.0104 (15)
N4	0.0372 (18)	0.049 (2)	0.0327 (17)	-0.0015 (15)	-0.0127 (15)	-0.0175 (16)
N5	0.044 (2)	0.042 (2)	0.0341 (18)	-0.0130 (16)	-0.0160 (16)	-0.0069 (15)
01	0.086 (3)	0.095 (3)	0.0326 (17)	-0.057 (2)	-0.0099 (17)	-0.0172 (17)
02	0.0548 (19)	0.063 (2)	0.0282 (14)	-0.0365 (16)	-0.0002 (14)	-0.0169 (14)
O3	0.0400 (16)	0.0597 (19)	0.0293 (14)	-0.0219 (14)	-0.0053 (12)	-0.0140 (13)
O4	0.098 (3)	0.084 (3)	0.058 (2)	-0.044 (2)	-0.024 (2)	-0.025 (2)
05	0.067 (3)	0.121 (4)	0.105 (3)	-0.055 (3)	-0.013 (3)	-0.046 (3)
O6	0.064 (2)	0.062 (2)	0.053 (2)	-0.0251 (19)	0.0093 (19)	0.0038 (18)
07	0.071 (2)	0.074 (3)	0.0321 (17)	-0.006 (2)	-0.0065 (17)	-0.0024 (17)
C1	0.0288 (19)	0.037 (2)	0.0275 (18)	-0.0069 (16)	-0.0070 (16)	-0.0091 (16)
C2	0.0273 (19)	0.038 (2)	0.037 (2)	-0.0056 (16)	-0.0066 (16)	-0.0129 (17)
C3	0.035 (2)	0.041 (2)	0.049 (2)	-0.0097 (18)	-0.0141 (19)	-0.0166 (19)
C4	0.034 (2)	0.036 (2)	0.052 (3)	-0.0099 (18)	-0.003 (2)	-0.004 (2)
C5	0.035 (2)	0.034 (2)	0.034 (2)	-0.0043 (17)	-0.0023 (17)	-0.0015 (17)
C6	0.038 (2)	0.043 (2)	0.0294 (19)	-0.0043 (18)	-0.0105 (17)	-0.0073 (17)
C7	0.040 (2)	0.051 (3)	0.0290 (19)	-0.0168 (19)	-0.0113 (18)	-0.0123 (18)
C8	0.051 (3)	0.044 (3)	0.044 (2)	-0.018 (2)	-0.003 (2)	-0.015 (2)
C9	0.058 (3)	0.048 (3)	0.064 (3)	-0.017 (2)	-0.001 (3)	-0.024 (2)
C10	0.062 (3)	0.044 (3)	0.057 (3)	-0.020 (2)	0.003 (3)	-0.006 (2)
C11	0.061 (3)	0.045 (3)	0.035 (2)	-0.001 (2)	-0.003 (2)	0.001 (2)
C12	0.052 (3)	0.069 (3)	0.030 (2)	0.011 (2)	-0.014 (2)	-0.014 (2)
C13	0.065 (3)	0.089 (4)	0.034 (2)	0.020 (3)	-0.025 (2)	-0.027 (3)
C14	0.051 (3)	0.084 (4)	0.057 (3)	0.009 (3)	-0.030 (3)	-0.038 (3)
C15	0.047 (3)	0.062 (3)	0.042 (2)	0.001 (2)	-0.020 (2)	-0.021 (2)
C16	0.039 (2)	0.045 (2)	0.028 (2)	0.0075 (19)	-0.0083 (18)	-0.0098 (18)
C17	0.042 (2)	0.036 (2)	0.031 (2)	0.0048 (18)	-0.0031 (18)	-0.0070 (17)
C18	0.048 (3)	0.047 (3)	0.042 (2)	-0.019 (2)	-0.013 (2)	-0.011 (2)
C19	0.066 (3)	0.046 (3)	0.048 (3)	-0.007 (2)	-0.012 (2)	-0.020 (2)
C20	0.058 (3)	0.063 (3)	0.042 (3)	0.005 (3)	-0.011 (2)	-0.010 (2)
C21	0.040 (3)	0.077 (4)	0.047 (3)	-0.016 (3)	-0.016 (2)	-0.002 (3)
C22	0.048 (3)	0.052 (3)	0.043 (2)	-0.016 (2)	-0.018 (2)	-0.009 (2)
Geometric pa	rameters (Å, °)					
C_{11} O_{1}^{2}		1.904(2)	C6	<u>Ц6 л</u>	0.02	00

Cu1-O21.896 (3)C6--H6A0.9300Cu1-O31.917 (3)C8--C91.388 (6)

Cu1—N4	2.007 (3)	С8—Н8А	0.9300
Cu1—N3	2.020 (3)	C9—C10	1.372 (8)
Cu1—N5	2.267 (4)	С9—Н9А	0.9300
N1—O5	1.220 (5)	C10—C11	1.367 (8)
N1—O4	1.220 (6)	C10—H10A	0.9300
N1—C3	1.466 (6)	C11—C17	1.394 (6)
N2—O6	1.219 (5)	C11—H11A	0.9300
N2—O7	1.224 (6)	C12—C13	1.367 (8)
N2—C5	1.460 (5)	C12—C16	1.382 (6)
N3—C8	1.334 (6)	C12—H12A	0.9300
N3—C17	1.356 (6)	C13—C14	1.372 (8)
N4—C15	1.326 (6)	C13—H13A	0.9300
N4—C16	1.352 (6)	C14—C15	1.386 (6)
N5—C18	1.334 (6)	C14—H14A	0.9300
N5—C22	1.344 (6)	C15—H15A	0.9300
O1—C7	1.225 (5)	C16—C17	1.468 (6)
O2—C7	1.287 (5)	C18—C19	1.360 (7)
O3—C2	1.278 (5)	C18—H18A	0.9300
C1—C6	1.376 (5)	C19—C20	1.367 (8)
C1—C2	1.439 (6)	С19—Н19А	0.9300
C1—C7	1.513 (5)	C20—C21	1.384 (8)
C2—C3	1.432 (5)	C20—H20A	0.9300
C3—C4	1.385 (6)	C21—C22	1.366 (7)
C4—C5	1.364 (7)	C21—H21A	0.9300
C4—H4A	0.9300	C22—H22A	0.9300
C5—C6	1.379 (6)		
O2—Cu1—O3	94.21 (12)	O2—C7—C1	120.4 (3)
O2—Cu1—N4	163.41 (15)	N3—C8—C9	122.0 (5)
O3—Cu1—N4	90.62 (14)	N3—C8—H8A	119.0
O2—Cu1—N3	91.20 (13)	С9—С8—Н8А	119.0
O3—Cu1—N3	164.71 (15)	C10—C9—C8	118.6 (5)
N4—Cu1—N3	80.41 (15)	С10—С9—Н9А	120.7
O2—Cu1—N5	99.04 (15)	С8—С9—Н9А	120.7
O3—Cu1—N5	95.26 (13)	C11—C10—C9	120.1 (5)
N4—Cu1—N5	96.30 (14)	С11—С10—Н10А	120.0
N3—Cu1—N5	98.00 (14)	С9—С10—Н10А	120.0
O5—N1—O4	123.0 (5)	C10-C11-C17	119.3 (5)
O5—N1—C3	117.2 (5)	C10-C11-H11A	120.3
O4—N1—C3	119.7 (4)	C17—C11—H11A	120.3
O6—N2—O7	123.1 (4)	C13—C12—C16	119.1 (5)
O6—N2—C5	110 2 (5)	C13—C12—H12A	120.4
O7—N2—C5	118.3 (5)	010 012 111211	
	118.3 (5) 118.6 (4)	C16—C12—H12A	120.4
C8—N3—C17	118.3 (5) 118.6 (4) 119.5 (4)	C16—C12—H12A C12—C13—C14	120.4 119.2 (5)
C8—N3—C17 C8—N3—Cu1	118.3 (5) 118.6 (4) 119.5 (4) 125.5 (3)	C16—C12—H12A C12—C13—C14 C12—C13—H13A	120.4 119.2 (5) 120.4
C8—N3—C17 C8—N3—Cu1 C17—N3—Cu1	118.3 (5) 118.6 (4) 119.5 (4) 125.5 (3) 114.9 (3)	C16—C12—H12A C12—C13—C14 C12—C13—H13A C14—C13—H13A	120.4 119.2 (5) 120.4 120.4
C8—N3—C17 C8—N3—Cu1 C17—N3—Cu1 C15—N4—C16	118.3 (5) 118.6 (4) 119.5 (4) 125.5 (3) 114.9 (3) 119.4 (4)	C16—C12—H12A C12—C13—C14 C12—C13—H13A C14—C13—H13A C13—C14—C15	120.4 119.2 (5) 120.4 120.4 119.6 (5)
C8—N3—C17 C8—N3—Cu1 C17—N3—Cu1 C15—N4—C16 C15—N4—Cu1	118.3 (5) 118.6 (4) 119.5 (4) 125.5 (3) 114.9 (3) 119.4 (4) 125.4 (3)	C16—C12—H12A C12—C13—C14 C12—C13—H13A C14—C13—H13A C13—C14—C15 C13—C14—H14A	120.4 119.2 (5) 120.4 120.4 119.6 (5) 120.2
C8—N3—C17 C8—N3—Cu1 C17—N3—Cu1 C15—N4—C16 C15—N4—Cu1 C16—N4—Cu1	118.3 (5) 118.6 (4) 119.5 (4) 125.5 (3) 114.9 (3) 119.4 (4) 125.4 (3) 115.2 (3)	C16—C12—H12A C12—C13—C14 C12—C13—H13A C14—C13—H13A C13—C14—C15 C13—C14—H14A C15—C14—H14A	120.4 119.2 (5) 120.4 120.4 119.6 (5) 120.2 120.2

supplementary materials

C18—N5—Cu1	121.6 (3)	N4—C15—H15A	119.4
C22—N5—Cu1	121.3 (3)	C14—C15—H15A	119.4
C7—O2—Cu1	128.7 (3)	N4—C16—C12	121.4 (4)
C2—O3—Cu1	125.1 (3)	N4—C16—C17	115.0 (4)
C6—C1—C2	120.3 (4)	C12—C16—C17	123.6 (4)
C6—C1—C7	116.3 (4)	N3—C17—C11	120.5 (5)
C2—C1—C7	123.3 (3)	N3—C17—C16	114.4 (4)
O3—C2—C3	120.5 (4)	C11—C17—C16	125.1 (4)
O3—C2—C1	124.2 (4)	N5-C18-C19	123.6 (4)
C3—C2—C1	115.3 (4)	N5—C18—H18A	118.2
C4—C3—C2	123.0 (4)	C19—C18—H18A	118.2
C4—C3—N1	116.3 (4)	C18—C19—C20	119.1 (5)
C2—C3—N1	120.7 (4)	С18—С19—Н19А	120.5
C5—C4—C3	118.7 (4)	С20—С19—Н19А	120.5
С5—С4—Н4А	120.6	C19—C20—C21	118.9 (5)
C3—C4—H4A	120.6	С19—С20—Н20А	120.5
C4—C5—C6	121.3 (4)	C21—C20—H20A	120.5
C4—C5—N2	119.3 (4)	C22—C21—C20	118.1 (5)
C6—C5—N2	119.4 (4)	C22—C21—H21A	121.0
C1—C6—C5	121.3 (4)	C20—C21—H21A	121.0
С1—С6—Н6А	119.3	N5—C22—C21	123.7 (5)
С5—С6—Н6А	119.3	N5—C22—H22A	118.2
O1—C7—O2	122.1 (4)	C21—C22—H22A	118.2
O1—C7—C1	117.5 (4)		
O2—Cu1—N3—C8	-14.4 (4)	C3—C4—C5—N2	-179.1 (4)
O3—Cu1—N3—C8	-125.2 (5)	O6—N2—C5—C4	4.9 (6)
N4—Cu1—N3—C8	-180.0 (4)	O7—N2—C5—C4	-175.0 (4)
N5—Cu1—N3—C8	84.9 (4)	O6—N2—C5—C6	-173.9 (4)
O2—Cu1—N3—C17	163.5 (3)	O7—N2—C5—C6	6.1 (6)
O3—Cu1—N3—C17	52.7 (6)	C2—C1—C6—C5	1.1 (6)
N4—Cu1—N3—C17	-2.2 (3)	C7—C1—C6—C5	-176.9 (4)
N5—Cu1—N3—C17	-97.2 (3)	C4—C5—C6—C1	-0.2 (7)
O2—Cu1—N4—C15	120.4 (5)	N2-C5-C6-C1	178.6 (4)
O3—Cu1—N4—C15	13.3 (4)	Cu1—O2—C7—O1	177.8 (4)
N3—Cu1—N4—C15	-179.1 (4)	Cu1—O2—C7—C1	-1.7 (7)
N5—Cu1—N4—C15	-82.1 (4)	C6—C1—C7—O1	9.6 (6)
O2—Cu1—N4—C16	-59.5 (6)	C2—C1—C7—O1	-168.3 (4)
O3—Cu1—N4—C16	-166.6 (3)	C6—C1—C7—O2	-170.8 (4)
N3—Cu1—N4—C16	1.0 (3)	C2—C1—C7—O2	11.3 (7)
N5-Cu1-N4-C16	98.0 (3)	C17—N3—C8—C9	0.6 (7)
O2—Cu1—N5—C18	-138.0 (3)	Cu1—N3—C8—C9	178.4 (4)
O3—Cu1—N5—C18	-42.9 (3)	N3—C8—C9—C10	-1.4 (8)
N4-Cu1-N5-C18	48.4 (3)	C8—C9—C10—C11	0.5 (8)
N3—Cu1—N5—C18	129.5 (3)	C9—C10—C11—C17	1.0 (8)
O2—Cu1—N5—C22	51.4 (3)	C16—C12—C13—C14	0.7 (8)
O3—Cu1—N5—C22	146.5 (3)	C12—C13—C14—C15	-0.4 (8)
N4—Cu1—N5—C22	-122.3 (3)	C16—N4—C15—C14	-0.2 (7)
N3—Cu1—N5—C22	-41.1 (3)	Cu1—N4—C15—C14	180.0 (4)
O3—Cu1—O2—C7	-11.4 (4)	C13—C14—C15—N4	0.2 (8)

N4—Cu1—O2—C7	-118.0 (5)	C15—N4—C16—C12	0.4 (6)
N3—Cu1—O2—C7	-177.1 (4)	Cu1—N4—C16—C12	-179.7 (3)
N5—Cu1—O2—C7	84.6 (4)	C15—N4—C16—C17	-179.6 (4)
O2—Cu1—O3—C2	21.7 (4)	Cu1—N4—C16—C17	0.3 (5)
N4—Cu1—O3—C2	-174.2 (4)	C13—C12—C16—N4	-0.6 (7)
N3—Cu1—O3—C2	132.1 (5)	C13-C12-C16-C17	179.3 (4)
N5—Cu1—O3—C2	-77.8 (4)	C8—N3—C17—C11	1.0 (6)
Cu1—O3—C2—C3	164.5 (3)	Cu1—N3—C17—C11	-177.0 (3)
Cu1—O3—C2—C1	-18.7 (6)	C8—N3—C17—C16	-179.1 (4)
C6—C1—C2—O3	-178.2 (4)	Cu1—N3—C17—C16	2.9 (5)
C7—C1—C2—O3	-0.4 (7)	C10-C11-C17-N3	-1.8 (7)
C6—C1—C2—C3	-1.3 (6)	C10-C11-C17-C16	178.3 (4)
C7—C1—C2—C3	176.5 (4)	N4-C16-C17-N3	-2.1 (5)
O3—C2—C3—C4	177.8 (4)	C12-C16-C17-N3	177.9 (4)
C1—C2—C3—C4	0.7 (6)	N4-C16-C17-C11	177.7 (4)
O3—C2—C3—N1	-2.1 (7)	C12-C16-C17-C11	-2.2 (7)
C1—C2—C3—N1	-179.2 (4)	C22-N5-C18-C19	2.3 (7)
O5—N1—C3—C4	-22.6 (7)	Cu1—N5—C18—C19	-168.7 (4)
O4—N1—C3—C4	156.2 (5)	N5-C18-C19-C20	-0.4 (8)
O5—N1—C3—C2	157.3 (5)	C18—C19—C20—C21	-1.4 (8)
O4—N1—C3—C2	-23.8 (7)	C19—C20—C21—C22	1.0 (7)
C2—C3—C4—C5	0.0 (7)	C18—N5—C22—C21	-2.7 (7)
N1—C3—C4—C5	180.0 (4)	Cu1—N5—C22—C21	168.4 (4)
C3—C4—C5—C6	-0.3 (7)	C20-C21-C22-N5	1.0 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
C13—H13A···O1 ⁱ	0.93	2.31	3.226 (6)	169	
C22—H22A···O1 ⁱⁱ	0.93	2.47	3.174 (6)	133	
C9—H9A…O6 ⁱⁱⁱ	0.93	2.68	3.306 (6)	125	
C19—H19A…O5 ^{iv}	0.93	2.64	3.283 (6)	126	
Symmetry codes: (i) $x, y, z+1$; (ii) $-x+1, -y+1, -z+1$; (iii) $x-1, y-1, z+1$; (iv) $-x+2, -y+2, -z+1$.					

Fig. 1

Fig. 2